organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Phenyl-1-[(1-phenylethyl)sulfonylmethylsulfonyl]ethane

Bing-zhu Zhang,^{a,b} Xiang-min Chen,^c Huai-ping Kang,^b Feng-xia Sun,^b* Yan-ji Wang,^a Jing-tao Liu^b and De-bin Wang^b

^aCollege of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China, ^bCollege of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China, and ^cGraduate School, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China Correspondence e-mail: fxsun001@163.com

Received 24 August 2009; accepted 19 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.058; wR factor = 0.155; data-to-parameter ratio = 14.9.

There are two molecules in the asymmetric unit of the title compound, C₁₇H₂₀O₄S₂. There are slight differences in the twist of the two rings relative to the S-C-S chain [dihedral angles of 48.41 (18) and 87.58 (16) $^{\circ}$ in the first molecule and 45.98 (18) and 87.02 $(18)^{\circ}$ in the second] and the difference in the C-S-C-S torsion angles [176.68 (17) and -77.6 (2)° for the two independent molecules].

Related literature

The title compound is a by-product from the synthesis of 1phenylethanesulfonic acid. 1-Phenyl-ethanesulfonic acid is a favorable resolving agent for the diastereomeric resolution of DL-p-hydroxyphenylglycine, see: Yoshioka, et al. (1987). D-phydroxyphenylglycine is useful as a side chain in semisynthetic penicillins or cephalosporins, see: Crast (1970).

Experimental

Crystal data

° 2
V = 7094 (2) A ³
Z = 16
Mo $K\alpha$ radiation
$\mu = 0.32 \text{ mm}^{-1}$
T = 293 K
$0.20 \times 0.18 \times 0.16~\mathrm{mm}$

Data collection

Rigaku Saturn CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(CrystalClear; Rigaku, 2005)	
$T_{\min} = 0.940, \ T_{\max} = 0.951$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	420 parameters
$wR(F^2) = 0.155$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
6253 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

45855 measured reflections 6253 independent reflections

 $R_{\rm int}=0.052$

5060 reflections with $I > 2\sigma(I)$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge support from Nankai University and Hebei University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2264).

References

Crast, L. B. Jr (1970). US Patent 3489750.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122

Yoshioka, R., Tohyama, M., Yamada, S., Ohtsuki, O. & Chibata, I. (1987). Bull. Chem. Soc. Jpn, 60, 4321-4323.

Acta Cryst. (2009). E65, o3198 [doi:10.1107/S1600536809049423]

1-Phenyl-1-[(1-phenylethyl)sulfonylmethylsulfonyl]ethane

B. Zhang, X. Chen, H. Kang, F. Sun, Y. Wang, J. Liu and D. Wang

Comment

It is well known that *D-p*-hydroxyphenylglycine is useful as a side chain of semisynthetic penicillins or cephalosporins (Crast, 1970). 1-Phenyl-ethanesulfonic acid is a favorable resolving agent for the diastereomeric resolution of DL-*p*-hydroxyphenylglycine (Yoshioka, *et al.*,1987). The title compound (Fig. 1) is a byproduct from the synthesis of 1-phenyl-ethanesulfonic acid. The compound crystallized with two molecules per asymmetric unit. The formula is symmetric about the central carbon but there is no physical symmetry relating the two halves of the molecule. The dihedral angle between the two aromatic rings is essentially the same in each molecule. The crystallographic symmetry was lost due to the small differences in the twist of the two rings related to the CSCSC chain and also the difference in the two CSCS torsion angles in the chain itself (176.68 (17) and -77.6 (2) for the two independent molecules). The dihedral angle between the C10-C12-C13-C14-C15-C16-C17 plane and the plane formed by atoms S2-C9-S1 is 87.58 (16), while the dihedral angle between the C1-C2-C3-C4-C5-C6-C7 plane and the plane formed by atoms S4-C26-S3 is 45.98 (18), while the dihedral angle between C18-C19-C20-C21-C23-C24 plane and the plane formed by atoms S4-C26-S3 is 87.02 (18). C10 and C7 are displaced from the plane formed by atoms S2-C9-S1 by 0.102 (1) Å and 1.668 (1) Å respectively while in the second molecule, C27 and C24 are displaced from the plane formed by atoms S4-C26-S3 by 1.695 (1) Å and 0.123 (1) Å respectively.

Experimental

The title compound was found by chance during the synthesis of 1-phenyl- ethanesulfonic acid. In order to clarify the structure, we prepared the compound as following. 1-Phenyl-ethanethiol (10 g), paraformaldehyde(1.5 g) and water(4 mL) were placed in a 50 mL three-necked flask. The mixture was cooled to 283 K. To this suspension, hydrochloric acid (30%,10 g)was added at 283 K. After the addition was completed, the solution was stirred until all the thiol had reacted (according to TLC, 7 h). The solution was then extracted with petroleum ether(80 mL). The combined organic layers was dried over anhydrous magnesium sulfate, and concentrated *in vacuo* to yield a brown liquid (8.9 g). Hydrogen peroxide(30%, 28.0 g) was added to the solution of the brown liquid (8.9 g) and acetic acid(11.1 g) at 283 K. The solution was stirred at 283 K for 4 h to obtain the title compound. Ethyl acetate was used to extract and light yellow block crystals were obtained by slow evaporation of the solution.

Refinement

H atoms on C atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93-0.98 A ° and $U_{iso}(H) = 1.2Ueq(C)$ or 1.5Ueq(methyl C).

Figures

Fig. 1. A view of the title compound (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

1-Phenyl-1-[(1-phenylethyl)sulfonylmethylsulfonyl]ethane

Crystal data

$C_{17}H_{20}O_4S_2$	$D_{\rm x} = 1.320 {\rm ~Mg~m}^{-3}$
$M_r = 352.45$	Melting point = 443.0–442.0 K
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 16.662 (3) Å	Cell parameters from 12971 reflections
b = 19.270 (4) Å	$\theta = 2.1 - 27.1^{\circ}$
c = 22.094 (4) Å	$\mu = 0.32 \text{ mm}^{-1}$
$V = 7094 (2) \text{ Å}^3$	T = 293 K
Z=16	Block, light yellow
F(000) = 2976	$0.20\times0.18\times0.16~mm$

Data collection

Rigaku Saturn CCD area-detector diffractometer	6253 independent reflections
Radiation source: rotating anode	5060 reflections with $I > 2\sigma(I)$
confocal	$R_{\rm int} = 0.052$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω and ϕ scans	$h = -19 \rightarrow 18$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -22 \rightarrow 22$
$T_{\min} = 0.940, \ T_{\max} = 0.951$	$l = -26 \rightarrow 26$
45855 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.058$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0766P)^2 + 2.0257P]$ $wR(F^2) = 0.155$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.002$ S = 1.11 $\Delta \rho_{\text{max}} = 0.26 \text{ e} \text{ Å}^{-3}$ 6253 reflections $\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$ 420 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), 0 restraints $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant direct Extinction coefficient: 0.0035 (4)

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.42601 (4)	0.14356 (4)	0.65021 (3)	0.0548 (2)
S2	0.43044 (5)	0.28236 (4)	0.71302 (4)	0.0658 (3)
S3	0.91769 (4)	0.01716 (4)	0.58927 (3)	0.0549 (2)
S4	0.95474 (4)	0.14921 (4)	0.52137 (3)	0.0595 (2)
01	0.50929 (13)	0.14107 (13)	0.66501 (12)	0.0812 (7)
O2	0.40126 (15)	0.11824 (12)	0.59213 (9)	0.0745 (6)
O3	0.39709 (17)	0.25589 (12)	0.76788 (9)	0.0842 (7)
O4	0.51574 (14)	0.28768 (13)	0.70805 (14)	0.0964 (8)
05	0.99638 (12)	-0.01180 (13)	0.58338 (9)	0.0716 (6)
O6	0.90029 (12)	0.05709 (11)	0.64260 (8)	0.0626 (5)
07	1.03467 (12)	0.13461 (14)	0.54114 (11)	0.0783 (7)
08	0.94424 (13)	0.17500 (12)	0.46090 (9)	0.0680 (6)
C1	0.2418 (2)	0.0672 (2)	0.65607 (16)	0.0807 (10)
H1	0.2706	0.0376	0.6309	0.097*
C2	0.1600 (3)	0.0728 (3)	0.6496 (2)	0.1075 (15)
H2	0.1340	0.0469	0.6200	0.129*
C3	0.1172 (3)	0.1152 (3)	0.6855 (3)	0.1045 (15)
H3	0.0619	0.1186	0.6805	0.125*
C4	0.1543 (2)	0.1535 (2)	0.7294 (2)	0.0925 (12)
H4	0.1244	0.1825	0.7544	0.111*
C5	0.2375 (2)	0.14881 (17)	0.73661 (16)	0.0702 (9)
Н5	0.2631	0.1750	0.7662	0.084*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C6	0.28160 (17)	0.10547 (14)	0.69983 (12)	0.0520 (7)
C7	0.37104 (17)	0.09921 (14)	0.70854 (12)	0.0516 (7)
H7	0.3846	0.1210	0.7473	0.062*
C8	0.4035 (2)	0.02521 (17)	0.70958 (16)	0.0789 (10)
H8A	0.3753	-0.0013	0.7396	0.118*
H8B	0.4597	0.0261	0.7192	0.118*
H8C	0.3960	0.0042	0.6706	0.118*
C9	0.39327 (17)	0.23133 (14)	0.65224 (12)	0.0521 (7)
H9A	0.4088	0.2534	0.6145	0.063*
H9B	0.3351	0.2316	0.6541	0.063*
C10	0.3892 (2)	0.36687 (17)	0.69637 (16)	0.0721 (9)
H10	0.4176	0.3848	0.6608	0.086*
C11	0.4098 (3)	0.4138 (2)	0.7492 (2)	0.1226 (18)
H11A	0.3917	0.4601	0.7407	0.184*
H11B	0.4669	0.4141	0.7551	0.184*
H11C	0.3840	0.3970	0.7851	0.184*
C12	0.30164 (19)	0.36350 (15)	0.68054 (15)	0.0607 (8)
C13	0.2783 (2)	0.3767 (2)	0.62202 (18)	0.0861 (11)
H13	0.3168	0.3885	0.5933	0.103*
C14	0.1986 (4)	0.3726 (3)	0.6053 (3)	0.133 (2)
H14	0.1825	0.3822	0.5659	0.160*
C15	0.1430 (3)	0.3535 (3)	0.6495 (5)	0.149 (3)
H15	0.0892	0.3485	0.6393	0.179*
C16	0.1663 (4)	0.3425 (3)	0.7057 (4)	0.133 (2)
H16	0.1279	0.3318	0.7348	0.160*
C17	0.2446 (3)	0.34631 (19)	0.7224 (2)	0.0892 (12)
H17	0.2594	0.3372	0.7622	0.107*
C18	0.7175 (2)	-0.03355 (18)	0.52485 (15)	0.0732 (9)
H18	0.7416	-0.0530	0.4909	0.088*
C19	0.6381 (2)	-0.0121 (2)	0.52199 (19)	0.0934 (12)
H19	0.6089	-0.0180	0.4865	0.112*
C20	0.6028 (2)	0.0175 (2)	0.5712 (2)	0.0885 (11)
H20	0.5498	0.0324	0.5691	0.106*
C21	0.6446 (2)	0.02539 (19)	0.62323 (18)	0.0764 (10)
H21	0.6202	0.0459	0.6566	0.092*
C22	0.72306 (19)	0.00328 (17)	0.62717 (14)	0.0654 (8)
H22	0.7509	0.0081	0.6634	0.078*
C23	0.76090 (17)	-0.02629 (15)	0.57724 (13)	0.0536 (7)
C24	0.84634 (17)	-0.05169 (15)	0.58011 (13)	0.0570 (7)
H24	0.8581	-0.0748	0.5416	0.068*
C25	0.8621 (2)	-0.10406 (19)	0.63070 (16)	0.0807 (10)
H25A	0.8535	-0.0823	0.6692	0.121*
H25B	0.9166	-0.1201	0.6282	0.121*
H25C	0.8262	-0.1427	0.6264	0.121*
C26	0.89830 (16)	0.07083 (16)	0.52489 (11)	0.0534 (7)
H26A	0.9092	0.0441	0.4886	0.064*
H26B	0.8417	0.0825	0.5246	0.064*
C27	0.90765 (19)	0.20848 (18)	0.57385 (14)	0.0671 (9)
H27	0.9089	0.1869	0.6140	0.081*

C28	0.9598 (3)	0.2734 (3)	0.5763 (2)	0.1152 (16)
H28A	0.9649	0.2925	0.5364	0.173*
H28B	1.0120	0.2615	0.5916	0.173*
H28C	0.9354	0.3070	0.6026	0.173*
C29	0.82128 (19)	0.22151 (16)	0.55802 (14)	0.0611 (8)
C30	0.7612 (2)	0.18929 (19)	0.59077 (16)	0.0771 (10)
H30	0.7748	0.1587	0.6217	0.093*
C31	0.6814 (2)	0.2018 (2)	0.5783 (2)	0.0978 (13)
H31	0.6419	0.1802	0.6013	0.117*
C32	0.6603 (3)	0.2448 (2)	0.5333 (2)	0.1013 (14)
H32	0.6063	0.2530	0.5256	0.122*
C33	0.7169 (3)	0.2765 (2)	0.4991 (2)	0.0950 (13)
H33	0.7016	0.3052	0.4674	0.114*
C34	0.7977 (3)	0.26611 (18)	0.51137 (16)	0.0802 (10)
H34	0.8364	0.2889	0.4884	0.096*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0510 (4)	0.0588 (5)	0.0545 (4)	0.0056 (3)	0.0035 (3)	-0.0007 (3)
S2	0.0669 (5)	0.0562 (5)	0.0742 (6)	-0.0133 (4)	-0.0189 (4)	0.0005 (4)
S3	0.0473 (4)	0.0713 (5)	0.0460 (4)	0.0054 (3)	-0.0008 (3)	0.0045 (3)
S4	0.0458 (4)	0.0806 (6)	0.0522 (4)	-0.0071 (4)	0.0008 (3)	0.0088 (4)
01	0.0452 (12)	0.0881 (17)	0.1104 (18)	0.0122 (11)	0.0044 (12)	-0.0007 (14)
02	0.1017 (18)	0.0751 (15)	0.0467 (12)	0.0035 (13)	0.0062 (11)	-0.0084 (10)
O3	0.125 (2)	0.0704 (15)	0.0570 (13)	-0.0155 (14)	-0.0186 (13)	-0.0040 (11)
O4	0.0565 (14)	0.0835 (17)	0.149 (2)	-0.0166 (13)	-0.0312 (14)	0.0037 (16)
O5	0.0459 (12)	0.0994 (17)	0.0696 (13)	0.0169 (11)	-0.0043 (10)	0.0080 (12)
O6	0.0709 (14)	0.0757 (14)	0.0413 (10)	-0.0014 (11)	0.0021 (9)	-0.0015 (9)
07	0.0431 (12)	0.1102 (19)	0.0816 (15)	-0.0108 (12)	-0.0066 (10)	0.0171 (13)
08	0.0707 (14)	0.0814 (15)	0.0518 (12)	0.0013 (11)	0.0071 (10)	0.0163 (10)
C1	0.071 (2)	0.091 (3)	0.081 (2)	-0.0129 (19)	-0.0115 (18)	-0.009 (2)
C2	0.073 (3)	0.129 (4)	0.120 (4)	-0.028 (3)	-0.027 (3)	0.003 (3)
C3	0.058 (2)	0.115 (4)	0.140 (4)	-0.012 (3)	-0.007 (3)	0.032 (3)
C4	0.069 (2)	0.090 (3)	0.119 (3)	0.001 (2)	0.033 (2)	0.012 (2)
C5	0.061 (2)	0.069 (2)	0.080 (2)	-0.0048 (16)	0.0154 (17)	-0.0030 (17)
C6	0.0534 (16)	0.0508 (16)	0.0517 (16)	-0.0087 (13)	0.0000 (13)	0.0073 (12)
C7	0.0582 (17)	0.0513 (16)	0.0453 (15)	0.0014 (13)	-0.0045 (12)	0.0034 (12)
C8	0.101 (3)	0.0556 (19)	0.080 (2)	0.0167 (18)	-0.0067 (19)	0.0087 (16)
С9	0.0525 (16)	0.0547 (16)	0.0492 (15)	-0.0053 (13)	-0.0019 (12)	0.0091 (12)
C10	0.073 (2)	0.0572 (19)	0.086 (2)	-0.0122 (17)	-0.0067 (18)	0.0010 (16)
C11	0.143 (4)	0.065 (2)	0.160 (4)	-0.013 (3)	-0.052 (3)	-0.033 (3)
C12	0.0620 (19)	0.0499 (16)	0.070 (2)	-0.0009 (14)	0.0113 (15)	-0.0139 (14)
C13	0.087 (3)	0.092 (3)	0.079 (3)	0.019 (2)	0.000 (2)	-0.015 (2)
C14	0.119 (4)	0.134 (4)	0.147 (5)	0.058 (4)	-0.058 (4)	-0.071 (4)
C15	0.065 (3)	0.116 (4)	0.267 (9)	0.003 (3)	-0.021 (5)	-0.110 (6)
C16	0.085 (4)	0.085 (3)	0.229 (7)	-0.012 (3)	0.061 (4)	-0.036 (4)
C17	0.086 (3)	0.073 (2)	0.108 (3)	0.008 (2)	0.037 (2)	-0.010 (2)

C18	0.065 (2)	0.084 (2)	0.070 (2)	0.0042 (18)	-0.0046 (16)	-0.0184 (17)
C19	0.069 (2)	0.111 (3)	0.100 (3)	0.003 (2)	-0.023 (2)	-0.027 (2)
C20	0.053 (2)	0.092 (3)	0.121 (3)	0.0045 (19)	-0.004 (2)	-0.018 (2)
C21	0.061 (2)	0.078 (2)	0.090 (3)	0.0038 (18)	0.0190 (19)	-0.0103 (19)
C22	0.066 (2)	0.070 (2)	0.0601 (18)	0.0020 (16)	0.0102 (15)	-0.0033 (15)
C23	0.0514 (16)	0.0561 (17)	0.0535 (16)	-0.0020 (13)	0.0050 (13)	-0.0014 (13)
C24	0.0564 (18)	0.0613 (18)	0.0534 (16)	0.0067 (14)	0.0012 (13)	-0.0014 (13)
C25	0.090 (3)	0.068 (2)	0.084 (2)	0.0091 (19)	-0.0015 (19)	0.0184 (18)
C26	0.0425 (15)	0.0736 (19)	0.0442 (15)	0.0020 (14)	-0.0010 (11)	0.0033 (13)
C27	0.068 (2)	0.082 (2)	0.0521 (17)	-0.0144 (17)	0.0001 (15)	-0.0049 (15)
C28	0.099 (3)	0.120 (4)	0.126 (4)	-0.050 (3)	0.006 (3)	-0.042 (3)
C29	0.0656 (19)	0.0579 (17)	0.0597 (18)	-0.0021 (15)	0.0042 (15)	-0.0043 (14)
C30	0.071 (2)	0.070 (2)	0.090 (2)	0.0053 (18)	0.0155 (18)	0.0123 (18)
C31	0.070 (3)	0.077 (3)	0.146 (4)	0.005 (2)	0.023 (2)	0.003 (3)
C32	0.081 (3)	0.085 (3)	0.138 (4)	0.025 (2)	-0.011 (3)	-0.019 (3)
C33	0.117 (4)	0.078 (3)	0.091 (3)	0.041 (3)	-0.015 (3)	-0.002 (2)
C34	0.106 (3)	0.065 (2)	0.069 (2)	0.008 (2)	0.014 (2)	0.0018 (17)

Geometric parameters (Å, °)

S1—O1	1.426 (2)	С13—Н13	0.9300
S1—O2	1.433 (2)	C14—C15	1.396 (9)
S1—C9	1.778 (3)	C14—H14	0.9300
S1—C7	1.797 (3)	C15—C16	1.318 (9)
S2—O3	1.428 (2)	C15—H15	0.9300
S2—O4	1.429 (2)	C16—C17	1.358 (7)
S2—C9	1.776 (3)	С16—Н16	0.9300
S2—C10	1.805 (3)	С17—Н17	0.9300
S3—O5	1.431 (2)	C18—C23	1.372 (4)
S3—O6	1.437 (2)	C18—C19	1.388 (5)
S3—C26	1.788 (3)	C18—H18	0.9300
S3—C24	1.793 (3)	C19—C20	1.362 (5)
S4—O7	1.430 (2)	С19—Н19	0.9300
S4—O8	1.436 (2)	C20—C21	1.352 (5)
S4—C26	1.781 (3)	C20—H20	0.9300
S4—C27	1.807 (3)	C21—C22	1.377 (4)
C1—C2	1.374 (5)	C21—H21	0.9300
C1—C6	1.385 (4)	C22—C23	1.392 (4)
С1—Н1	0.9300	C22—H22	0.9300
C2—C3	1.345 (6)	C23—C24	1.507 (4)
С2—Н2	0.9300	C24—C25	1.529 (4)
C3—C4	1.366 (6)	C24—H24	0.9800
С3—Н3	0.9300	C25—H25A	0.9600
C4—C5	1.398 (5)	С25—Н25В	0.9600
C4—H4	0.9300	С25—Н25С	0.9600
C5—C6	1.377 (4)	C26—H26A	0.9700
С5—Н5	0.9300	C26—H26B	0.9700
C6—C7	1.507 (4)	C27—C29	1.502 (4)
С7—С8	1.526 (4)	C27—C28	1.524 (5)

С7—Н7	0.9800	С27—Н27	0.9800
C8—H8A	0.9600	C28—H28A	0.9600
C8—H8B	0.9600	C28—H28B	0.9600
C8—H8C	0.9600	C28—H28C	0.9600
С9—Н9А	0.9700	C29—C30	1.383 (4)
С9—Н9В	0.9700	C29—C34	1.398 (5)
C10-C12	1.501 (4)	C30—C31	1.379 (5)
C10-C11	1.517 (5)	С30—Н30	0.9300
C10—H10	0.9800	C31—C32	1.341 (6)
C11—H11A	0.9600	С31—Н31	0.9300
C11—H11B	0.9600	C32—C33	1.353 (6)
C11—H11C	0.9600	С32—Н32	0.9300
C12—C17	1.367 (5)	C33—C34	1.388 (5)
C12—C13	1.374 (5)	С33—Н33	0.9300
C13—C14	1.382 (6)	С34—Н34	0.9300
O1—S1—O2	118.26 (15)	C13—C14—C15	117.8 (6)
O1—S1—C9	108.95 (14)	C13—C14—H14	121.1
O2—S1—C9	104.96 (13)	C15—C14—H14	121.1
O1—S1—C7	108.39 (14)	C16—C15—C14	120.5 (6)
O2—S1—C7	109.48 (14)	C16—C15—H15	119.8
C9—S1—C7	106.14 (13)	C14—C15—H15	119.8
O3—S2—O4	118.55 (16)	C15—C16—C17	122.0 (6)
O3—S2—C9	107.97 (13)	C15—C16—H16	119.0
O4—S2—C9	109.17 (16)	C17—C16—H16	119.0
O3—S2—C10	110.31 (17)	C16—C17—C12	119.9 (5)
O4—S2—C10	107.35 (16)	С16—С17—Н17	120.1
C9—S2—C10	102.27 (14)	С12—С17—Н17	120.1
O5—S3—O6	117.93 (13)	C23—C18—C19	120.7 (3)
O5—S3—C26	108.59 (13)	C23—C18—H18	119.6
O6—S3—C26	107.82 (13)	C19—C18—H18	119.6
O5—S3—C24	107.99 (14)	C20—C19—C18	120.0 (3)
O6—S3—C24	110.80 (13)	C20-C19-H19	120.0
C26—S3—C24	102.61 (13)	C18—C19—H19	120.0
O7—S4—O8	117.77 (13)	C21—C20—C19	120.2 (3)
O7—S4—C26	108.16 (14)	C21—C20—H20	119.9
O8—S4—C26	105.66 (13)	C19—C20—H20	119.9
O7—S4—C27	109.44 (15)	C20—C21—C22	120.5 (3)
O8—S4—C27	108.98 (15)	C20—C21—H21	119.7
C26—S4—C27	106.18 (14)	C22—C21—H21	119.7
C2—C1—C6	120.4 (4)	C21—C22—C23	120.4 (3)
C2—C1—H1	119.8	C21—C22—H22	119.8
C6—C1—H1	119.8	C23—C22—H22	119.8
C3—C2—C1	120.8 (4)	C18—C23—C22	118.1 (3)
С3—С2—Н2	119.6	C18—C23—C24	120.0 (3)
C1—C2—H2	119.6	C22—C23—C24	121.8 (3)
C2—C3—C4	120.4 (4)	C23—C24—C25	114.1 (3)
С2—С3—Н3	119.8	C23—C24—S3	113.0 (2)
C4—C3—H3	119.8	C25—C24—S3	107.0 (2)
C3—C4—C5	119.7 (4)	C23—C24—H24	107.5

C3—C4—H4	120.2	C25—C24—H24	107.5
С5—С4—Н4	120.2	S3—C24—H24	107.5
C6—C5—C4	120.0 (3)	С24—С25—Н25А	109.5
С6—С5—Н5	120.0	С24—С25—Н25В	109.5
С4—С5—Н5	120.0	H25A—C25—H25B	109.5
C5—C6—C1	118.6 (3)	С24—С25—Н25С	109.5
C5—C6—C7	120.0 (3)	H25A—C25—H25C	109.5
C1—C6—C7	121.3 (3)	H25B—C25—H25C	109.5
C6—C7—C8	115.3 (3)	S4—C26—S3	115.46 (15)
C6—C7—S1	111.98 (18)	S4—C26—H26A	108.4
C8—C7—S1	105.9 (2)	S3—C26—H26A	108.4
С6—С7—Н7	107.8	S4—C26—H26B	108.4
С8—С7—Н7	107.8	S3—C26—H26B	108.4
S1—C7—H7	107.8	H26A—C26—H26B	107.5
С7—С8—Н8А	109.5	C29—C27—C28	114.7 (3)
C7—C8—H8B	109.5	C29—C27—S4	111.9 (2)
H8A—C8—H8B	109.5	C28—C27—S4	107.1 (2)
С7—С8—Н8С	109.5	С29—С27—Н27	107.6
H8A—C8—H8C	109.5	С28—С27—Н27	107.6
H8B—C8—H8C	109.5	S4—C27—H27	107.6
S2—C9—S1	116.03 (15)	C27—C28—H28A	109.5
S2—C9—H9A	108.3	C27—C28—H28B	109.5
S1—C9—H9A	108.3	H28A—C28—H28B	109.5
S2—C9—H9B	108.3	C27—C28—H28C	109.5
S1—C9—H9B	108.3	H28A—C28—H28C	109.5
Н9А—С9—Н9В	107.4	H28B—C28—H28C	109.5
C12-C10-C11	115.2 (3)	C30—C29—C34	117.3 (3)
C12—C10—S2	112.2 (2)	C30—C29—C27	119.8 (3)
C11—C10—S2	107.2 (3)	C34—C29—C27	122.9 (3)
C12-C10-H10	107.3	C31—C30—C29	121.0 (4)
C11-C10-H10	107.3	С31—С30—Н30	119.5
S2-C10-H10	107.3	С29—С30—Н30	119.5
C10-C11-H11A	109.5	C32—C31—C30	120.6 (4)
C10-C11-H11B	109.5	С32—С31—Н31	119.7
H11A—C11—H11B	109.5	С30—С31—Н31	119.7
C10—C11—H11C	109.5	C31—C32—C33	120.6 (4)
H11A—C11—H11C	109.5	С31—С32—Н32	119.7
H11B—C11—H11C	109.5	С33—С32—Н32	119.7
C17—C12—C13	119.0 (4)	C32—C33—C34	120.2 (4)
C17—C12—C10	121.9 (3)	С32—С33—Н33	119.9
C13—C12—C10	119.1 (3)	С34—С33—Н33	119.9
C12-C13-C14	120.9 (4)	C33—C34—C29	120.3 (4)
C12-C13-H13	119.6	С33—С34—Н34	119.9
C14—C13—H13	119.6	С29—С34—Н34	119.9
C6—C1—C2—C3	-0.1 (7)	C23—C18—C19—C20	1.1 (6)
C1—C2—C3—C4	-0.3 (7)	C18—C19—C20—C21	-0.9 (7)
C2—C3—C4—C5	0.6 (7)	C19—C20—C21—C22	-0.3 (6)
C3—C4—C5—C6	-0.5 (6)	C20—C21—C22—C23	1.2 (5)
C4—C5—C6—C1	0.1 (5)	C19—C18—C23—C22	-0.2 (5)

C4—C5—C6—C7	-178.6 (3)	C19—C18—C23—C24	178.3 (3)
C2-C1-C6-C5	0.2 (5)	C21—C22—C23—C18	-1.0 (5)
C2-C1-C6-C7	178.9 (3)	C21—C22—C23—C24	-179.4 (3)
C5—C6—C7—C8	132.9 (3)	C18—C23—C24—C25	-123.5 (3)
C1—C6—C7—C8	-45.7 (4)	C22—C23—C24—C25	54.9 (4)
C5-C6-C7-S1	-105.8 (3)	C18—C23—C24—S3	114.0 (3)
C1—C6—C7—S1	75.5 (3)	C22—C23—C24—S3	-67.6 (3)
O1—S1—C7—C6	174.3 (2)	O5—S3—C24—C23	-172.48 (19)
O2—S1—C7—C6	-55.4 (2)	O6—S3—C24—C23	57.0 (2)
C9—S1—C7—C6	57.4 (2)	C26—S3—C24—C23	-57.9 (2)
O1—S1—C7—C8	-59.3 (2)	O5—S3—C24—C25	61.2 (2)
O2—S1—C7—C8	71.1 (2)	O6—S3—C24—C25	-69.4 (2)
C9—S1—C7—C8	-176.2 (2)	C26—S3—C24—C25	175.8 (2)
O3—S2—C9—S1	-67.0 (2)	O7—S4—C26—S3	39.8 (2)
O4—S2—C9—S1	63.2 (2)	O8—S4—C26—S3	166.74 (15)
C10—S2—C9—S1	176.68 (17)	C27—S4—C26—S3	-77.6 (2)
O1—S1—C9—S2	-41.5 (2)	O5—S3—C26—S4	-69.9 (2)
O2—S1—C9—S2	-169.10 (16)	O6—S3—C26—S4	58.95 (19)
C7—S1—C9—S2	75.01 (19)	C24—S3—C26—S4	175.96 (16)
O3—S2—C10—C12	-67.9 (3)	O7—S4—C27—C29	-175.6 (2)
O4—S2—C10—C12	161.6 (2)	O8—S4—C27—C29	54.3 (3)
C9—S2—C10—C12	46.8 (3)	C26—S4—C27—C29	-59.1 (3)
O3—S2—C10—C11	59.5 (3)	O7—S4—C27—C28	57.9 (3)
O4—S2—C10—C11	-71.0 (3)	O8—S4—C27—C28	-72.2 (3)
C9—S2—C10—C11	174.2 (3)	C26—S4—C27—C28	174.4 (3)
C11—C10—C12—C17	-54.8 (4)	C28—C27—C29—C30	-134.8 (3)
S2-C10-C12-C17	68.2 (4)	S4—C27—C29—C30	103.0 (3)
C11—C10—C12—C13	126.6 (4)	C28—C27—C29—C34	44.4 (4)
S2-C10-C12-C13	-110.4 (3)	S4—C27—C29—C34	-77.8 (4)
C17—C12—C13—C14	-0.2 (5)	C34—C29—C30—C31	-1.0 (5)
C10-C12-C13-C14	178.5 (3)	C27—C29—C30—C31	178.2 (3)
C12—C13—C14—C15	-1.1 (7)	C29—C30—C31—C32	1.0 (6)
C13—C14—C15—C16	2.5 (8)	C30—C31—C32—C33	0.4 (7)
C14—C15—C16—C17	-2.8 (9)	C31—C32—C33—C34	-1.8 (6)
C15-C16-C17-C12	1.5 (7)	C32—C33—C34—C29	1.7 (6)
C13—C12—C17—C16	0.0 (5)	C30—C29—C34—C33	-0.3 (5)
C10-C12-C17-C16	-178.6 (4)	C27—C29—C34—C33	-179.5 (3)

Fig. 1

